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Summary

The objectives of this research were to identify genes, genomic regions, and gene networks
associated with three measures of fertility (daughter pregnancy rate, DPR; heifer conception rate,
HCR; and cow conception rate, CCR) and two measures of reproductive health (metritis, METR;
and retained placenta, RETP) in US Holstein using producer-reported data. A five-trait mixed
model analysis was used to perform a genome-wide association study (GWAS) to identify
significant SNP located within 25 kbp of genes in bull and cow predictor populations. Gene
ontology (GO) and medical subject heading (MeSH) analyses were used to identify pathways
and processes over-represented compared to a background set of all annotated Bos taurus genes.
An adaptive weight matrix was used to identify significant associations among genes. GWAS
results identified different sets of SNP in the two predictor populations, with SNP affecting
protein processing, cell-cell signaling, sex differentiation, and embryonic development.
Significant GO and MeSH terms also differed between predictor populations, but terms
associated with reproductive processes were identified in both cases. The degree of nodes in the
network analysis did not deviate from expectations, but fertility-related terms were identified,
and several of the most-connected genes were associated with male or female fertility and
embryo size and morphology in mice or humans, most notably ITPR1, SETB1, LMNB1, NEO1,
and DGKA. None of the 100 SNP explaining the most variance in the GWAS were among the
connected genes in the networks. While this study identified genes and interactions among them
clearly related to fertility, no obvious associations with peripartum reproductive health were
found. A more powerful experimental design, such as a case-control study, may be needed to
identify relationships among fertility and reproductive tract health.
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Introduction

Parker Gaddis et al. (2016) recently used single- and multiple-trait genome-wide association
studies (GWAS) in all-bull, all-cow, and mixed predictor populations to dissect three fertility
traits. Their results showed that gene network analysis was able to identify several important
genes that were not identified by ordinary GWAS. The US will soon introduce genetic
evaluations for 6 health traits in Holstein cattle, including retained placenta and metritis as



measures of reproductive health (Parker Gaddis et al., 2017). Cows beginning a lactation with
retained placenta or metritis have longer days open and lower conception rates than cows that do
not (e.g., Fourichon et al., 2000). However, it is not known to what degree susceptibility to
reproductive tract diseases and cow fertility are influenced by common sets of genes. The
objectives of this research were to identify genes, genomic regions, and gene networks
associated with three measures of fertility (daughter pregnancy rate, DPR; heifer conception rate,
HCR; and cow conception rate, CCR) and two measures of reproductive health (metritis, METR;
and retained placenta, RETP) in US Holstein cows.

Materials and methods

Phenotypic and genotypic data

Genomic evaluations for DPR, HCR, and CCR from the December 2016 proofs calculated by
the Council on Dairy Cattle Breeding (CDCB; Bowie, MD, USA) were combined with
evaluations of METR and RETP calculated from on-farm health event data provided by Dairy
Records Management Systems (Raleigh, NC, USA) as described in Parker Gaddis et al. (2014,
2017). Genotypes included 60,671 SNP used in the routine U.S. evaluations. Holstein bull and
cow predictor populations were formed by selecting animals with reliabilities of predicted
transmitting ability (PTA) for lifetime net merit greater than the reliability of their parent
average. All 35,724 bulls in the predictor set were retained, and a random sample of 35,000
cows was drawn from the 112,895 cows in the predictor population. Only animals with PTA for
all traits were included in the analysis.

Genome-wide association studies

The five-trait multivariate genome-wide association study (GWAS) used the model:

where Y is an n× 5 matrix offor n individuals, is the intercept, is an n-vector of marker

genotypes, is a vector of marker effect sizes for the 5 , U is an n× 5 matrix of random effects,

and E is an n× 5 matrix of errors. The random effects matrix, U, was where K is a known

relatedness matrix and is a symmetric matrix of genetic variance components. The error
matrix, E, was , where is an identity matrix and is a symmetric matrix of residual variance
components (Zhou, 2014).

SNP and enrichment analyses

Each autosomal marker was assigned to the closest gene within 25,000 bp using BEDTools
version 2.21.0 (Quinlan and Hall, 2010). Gene information was taken from the Bovine UMD3.1



genome assembly (Zimin et al., 2009). After merging with the annotated gene data 36,435
markers were available for subsequent analysis. SNP from the GWAS whose P-value from a
Wald test exceeded a threshold of 5 10-8 from the five-trait multivariate analysis were selected
for further analysis and gene function was determined by a review of the literature. Gene
ontology (GO; Ashburner et al., 2000) and medical subject heading (MeSH; Morota et al., 2015)
enrichment analyses were used to compare all SNP with P-values less than 0.05 against a
background of all annotated genes in the bovine genome. GO and MeSH term analyses were
carried out in R v. 3.4.0 using the “GOSTATS” v. 1.5.3 and “meshr” v. 1.12.0 packages as
distributed in Bioconductor v. 3.5.

Gene network construction
An association weight matrix (AWM) was constructed following the procedures previously
implemented by Fortes et al. The construction of the AWM started with the selection of relevant
SNP from those identified as significant in the association analyses. Each column in the AWM
corresponded to a trait, and each row corresponded to a SNP. Each cell in the matrix
corresponded to the z-score normalized effect size for the SNP. When more than one SNP was
mapped to the same gene, the most significant SNP was retained and the others dropped. Row-
wise partial correlations were computed on the AWM using the PCIT algorithm in R which
produced an m symmetric adjacency matrix. Each cell in the adjacency matrix corresponded to a
partial correlation between gene i and gene j. When partial correlations were not significant the
value in the cell was set to 0. The significant correlations can be interpreted as significant gene-
gene interactions. These interactions were used to construct bull (Figure 1) and cow gene
networks. In order to avoid spurious connections, the bull and cow networks were reduced to
sub-networks including only connections with a partial correlation ≥ 0.98. Correlation networks
were visualized using Cytoscape version 3.2.1 (Shannon et al., 2003).

Results and discussion

Genome-wide association studies

The were 43 significant SNP in the bull predictor population, and 11 in the cow population. The
five SNP with the largest effects in each population are described in Table 1. There was no clear
pattern among gene functions, but developmental, cell-signaling, and protein modification
processes were represented in both populations. The top SNP between the bull and cow
populations did not overlap.

Table 1. The five SNP with the largest effects on in a multivariate analysis using bull and cow
genotypes.

Grou
p

SNP Chrome
1

Location Gene Function –
log10(P)

Bulls BTB-00790451 20 57,373,160 FBXL7 Ubiquitination 44.67
ARS-BFGL-NGS-
64415

18 48,486,442 ECH1 Fatty acid
degradation

41.43

ARS-BFGL-NGS-
72630

6 118,871,663 SORCS2 Nervous
system

21.88



development
BTB-00259343 6 62,642,435 BEND4 Longevity 15.02
Hapmap55409-
rs29022997

4 33,236,485 CROT Lipid
metabolism

12.77

Cows ARS-BFGL-NGS-
23066

6 92,153,394 CDKL2 Sex
differentiation

13.26

BTB-00062715 1 135,269,426 EPHB1 Cell signaling 9.08
BTB-00176697 4 40,934,520 SEMA3C Embryonic

development
8.02

ARS-BFGL-NGS-
111133

4 119,341,142 UBE3C Ubiquitination 7.96

ARS-BFGL-NGS-
36082

17 55,916,203 KDM2B Ubiquitination 7.45

1Chrome = chromosome number.

GO and MeSH term enrichment analyses

Significantly enriched GO and MeSH terms for the bull and cow populations are presented in
Table 2. Gene ontology terms were taken from the Biological Processes category and identify
pathways that involve the activities of many gene products. Bulls were enriched for processes
including spermatogenesis and DNA processing, while cows were enriched for a broad array of
pathways including embryonic development and gene expression. Medical subject heading terms
identify enriched processes based on literature reports. As in the case of GO terms, many
different processes were identified in bulls, while cows had only two significant terms.

Table 2. Gene ontology (GO) and medical subject heading (MeSH) terms with significant effects
on in a multivariate analysis using bull and cow genotypes.

GO1 MeSH2,3

Group GO ID Term P-value MeSH ID Term P-value

Bulls 0006270 DNA replication
initiation

0.005 D002970 Cleavage
stage, ovum

0.004

0007288 sperm axoneme
assembly

0.014 D003599 Cytoskeleton 0.032

0051661 maintenance of
centrosome location

0.014 D009210 Myofibrils 0.035

1902979 mitotic DNA
replication termination

0.014 D013116 Spinal cord 0.035

0007283 spermatogenesis 0.036 D042541 Intracellular
space

0.036

Cows 2000738 positive regulation of
stem cell
differentiation

0.016 D002823 Chorion 0.034

0070126 mitochondrial
translational
termination

0.024 D009092 Mucous
membrane

0.043



2000637 positive regulation of
gene silencing by
miRNA

0.024 — — —

0048701 embryonic cranial
skeleton
morphogenesis

0.039 — — —

0060147 regulation of
posttranscriptional
gene silencing

0.039 — — —

1Biological processes (BP) category.
2Anatomy (A) category.
3Only two MeSH terms were significantly enriched in the cow population.

Gene networks

Sex-specific gene networks included 824 genes in bulls and 856 genes in cows. Their number of
connections (the degree of the vertices induced by the PCIT algorithm) ranged between 1 and
1,049 in bulls, and 1 and 1,240 in cows. The two networks shared 139 genes in common. The
number of connections between nodes in biological networks usually follows a Power-law
distribution. We used a Kolmogorov-Smirnov test to validate this assumption, and the null
hypothesis of the networks being drawn from a Power-law distribution was not rejected. Several
genes identified as the top connected in the networks were associated with either male or female
fertility and embryo size and morphology in mice or humans, most notably ITPR1, SETB1,
LMNB1, NEO1, and DGKA. None of the 100 SNP explaining the largest amount of variance in
the GWAS were among the most connected genes in the networks.

Figure 1. Gene network based on the bull predictor population constructed using edges from
thewith partial correlation ≥ 0.98. Node sizes are proportional to their degree.



Conclusions

As expected, these analyses identified individual SNP associated with fertility, and enriched
pathways also included some fertility terms. Bull- and cow-specific gene networks similarly
included genes with known effects on fertility. However, no significant loci had any obvious
associations with reproductive tract health as measured by METR and RETP. This may be due to
the . A case-control study using paired animals could provide greater power for identifying SNP
and coexpression networks associated with both reproductive health and fertility.
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